Isoperimetric ratios of Reuleaux polygons

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Linear-time Construction of Reuleaux Polygons

The relation between planar geometric graphs which are full equi-intersectors and Reuleaux polygons is studied. It is shown that there is a one-to-one correspondence between these objects. This is used to present exhaustive constructions of Reuleaux polygons of arbitrary (odd) order n. The obvious construction is running in quadratic time, but more careful investigations lead to a reened versio...

متن کامل

Enumerating isodiametric and isoperimetric polygons

For a positive integer n that is not a power of 2, precisely the same family of convex polygons with n sides is optimal in three different geometric problems. These polygons have maximal perimeter relative to their diameter, maximal width relative to their diameter, and maximal width relative to their perimeter. We study the number of different convex n-gons E(n) that are extremal in these thre...

متن کامل

Volume Ratios and a Reverse Isoperimetric Inequality

It is shown that if C is an n-dimensional convex body then there is an affine image C of C for which |∂ C| | C| n−1 n is no larger than the corresponding expression for a regular n-dimensional " tetrahedron ". It is also shown that among n-dimensional subspaces of L p (for each p ∈ [1, ∞]), ℓ n p has maximal volume ratio.

متن کامل

An isoperimetric inequality for logarithmic capacity of polygons

We verify an old conjecture of G. Pólya and G. Szegő saying that the regular n-gon minimizes the logarithmic capacity among all n-gons with a fixed area.

متن کامل

The Poincaré Metric and Isoperimetric Inequalities for Hyperbolic Polygons

We prove several isoperimetric inequalities for the conformal radius (or equivalently for the Poincaré density) of polygons on the hyperbolic plane. Our results include, as limit cases, the isoperimetric inequality for the conformal radius of Euclidean n-gons conjectured by G. Pólya and G. Szegö in 1951 and a similar inequality for the hyperbolic n-gons of the maximal hyperbolic area conjecture...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1960

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1960.10.823